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Effects of heat absorption and thermal radiation on heat
transfer in a fluid–particle flow past a surface in the

presence of a gravity field
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Abstract —A continuum two-phase fluid–particle model accounting for fluid-phase heat generation or absorption and thermal
radiation is developed and applied to the problem of heat transfer in a particulate suspension flow over a horizontal heated surface
in the presence of a gravity field. Analytical solutions for the temperature distributions and the wall heat fluxes for both phases are
obtained. Two cases of wall thermal conditions corresponding to stationary and periodic temperature distributions are considered.
Numerical evaluations of the analytical solutions are performed and the results are reported graphically to elucidate special features of
the solutions. The effects of heat absorption and thermal radiation are illustrated through representative results for the temperature
distributions and heat fluxes of both phases for various fluid–particle suspensions. It is found that heat absorption increases the total
heat transfer rate for various particulate volume fraction levels while thermal radiation decreases it.  2000 Éditions scientifiques et
médicales Elsevier SAS

Nomenclature

a particle radius . . . . . . . . . . . . . . m
c fluid-phase specific heat at constant pres-

sure . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

Ec Eckert number= (ga2γ /ν)2/(c(Tw−T∞))
f correction factor defined by equation (9)
g gravitational acceleration . . . . . . . . m·s−2

k specific heat ratiok = cp/c
K mean radiation absorption coefficient
N dimensionless thermal radiation coefficient
= 16σT 3∞/(Kλc)

p fluid-phase pressure . . . . . . . . . . . Pa
P dimensionless fluid-phase pressure
Pr Prandtl number= ν/κ
qf fluid-phase convective heat transfer rate

defined by equation (50) . . . . . . . . . W·m−2

qp particle-phase sensible heat transfer rate
defined by equation (51) . . . . . . . . . W·m−2

qr radiative heat flux defined by
equation (10) . . . . . . . . . . . . . . . W·m−2

qT total heat transfer rate= qf + qp . . . . W·m−2
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Qf dimensionless fluid-phase convective heat
transfer rate

Qp dimensionless particle-phase sensible heat
transfer rate

QT dimensionless heat transfer rate= qTa/
(κρc(Tw − T∞))

Q0 heat generation or absorption coefficient W

Re Reynolds number= ga3γ /ν2

t time . . . . . . . . . . . . . . . . . . . . s
T fluid-phase temperature . . . . . . . . . K

u fluid-phasex-component of velocity . . m·s−1

U dimensionless fluid-phasex-component of
velocity= ν/(ga2γ )u

v fluid-phasey-component of velocity . . m·s−1

V dimensionless fluid-phasey-component of
velocity= ν/(ga2γ )v

x distance along the surface . . . . . . . . m
y distance normal to the surface . . . . . . m

Greek symbols

α volume fraction of particles
αm dense sediment particulate volume

fraction (αm≈ 0.6)
η dimensionless vertical distance= y/a
γ particle loading= ρp/ρ
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κ fluid-phase thermal diffusivity= λc/(ρc) m2·s−1

λc fluid-phase thermal conductivity . . . . W·m−1·K−1

µ fluid-phase dynamic viscosity . . . . . . Pa·s
ν fluid-phase kinematic viscosity . . . . . m2·s−1

ω frequency of oscillation of wall
temperature . . . . . . . . . . . . . . . . s−1

φ dimensionless heat generation or
absorption coefficient=Q0a

2/(3λc)

ρ fluid-phase density . . . . . . . . . . . . kg·m−3

σ Stefan–Boltzmann constant . . . . . . . W·m−2·K−4

τ dimensionless time= gaγ /νt
θ dimensionless fluid-phase temperature
= (T − T∞)/(Tw − T∞)

ξ a constant to apportion heat dissipation
between the phases

Subscripts

i interface
p particle phase
w wall
∞ free stream

1. INTRODUCTION

The process of particulate deposition from flowing
fluid/solid suspensions and the consequent heat transfer
characteristics are important in various natural and engi-
neering applications. Some possible applications include
deep-bed and membrane filtration, fouling of heat trans-
fer surfaces, atmospheric pollution and microbial and cell
transport in living systems (Yiantsios and Karabelas [1]).
There have been considerable research work done on par-
ticulate deposition in laminar flows such as the reviews
by Jia and Williams [2] and van de Ven [3]. Sedimen-
tation effects for particle sizes close to one micron or
larger are reported by Yao et al. [4]. Adamczyk and van
de Ven [5, 6] have considered particulate deposition in
rectilinear flows over flat surfaces. Marmur and Rucken-
stein [7] have reported on the process of cells deposition
on a flat plate. Apazidis [8, 9] has analyzed the velocity
and temperature distributions of two-dimensional lami-
nar flows of a particulate suspension in the presence of a
gravity field. More recently, Dahlkid [10] has considered
the motion of Brownian particles and sediment on an in-
clined plate. This work was done in relation to the process
of separation of proteins, viruses, antibodies, and vac-
cines. Yiantsios and Karabelas [1] has studied the effect
of gravity on the deposition of micron-sized particles on
smooth surfaces. Their work was focused on particulate
deposition from liquid suspensions with the main motiva-
tion being fouling of heat transfer or filtration equipment
by suspended particles.

In many fluid–particle flows, the fluid heat gener-
ation or absorption and the thermal radiation effects
may play an important role in altering the heat transfer
characteristics. Vajravelu and Nayfeh [11] and Vajrav-
elu and Hadjinicolaou [12] have considered the effects
of temperature-dependent heat generation or absorption
on heat transfer in different geometries. Thermal radia-
tion effects on flow of micropolar fluids past a continu-
ously moving plate has been considered by Raptis [13].
Also, Raptis [14] has analyzed thermal radiation and free
convection flow through a porous medium. Thermal ra-
diation effects in particulate suspensions are especially
important in multiphase systems consisting of solid par-
ticulates and gases. The role of thermal radiation in these
systems is of major importance in the design of fluidized
beds, packed beds, catalytic reactors and many other ad-
vanced energy conversion systems operating at high tem-
peratures (Tien and Vafai [15]). Thermal radiation within
these systems is usually the result of emission by the hot
walls and the gas–particle mixture. This radiation under-
goes complex interaction with the system, primary due
to absorption and scattering processes. Examples of pre-
vious studies of radiative heat transfer through porous
beds can be found in the works of Vortmeyer [16] and
Tien [17].

In the present work, a very simple two-phase model
is employed in which the suspension is assumed to be
dilute in the sense that no interparticle collision exist and
that the thermal radiation is absorbed by the fluid and the
energy is then transferred to the particle phase through
the interphase heat transfer mechanism. The fluid phase is
considered to be a gray, absorbing and emitting radiation
but the particles are assumed to be nonscattering and that
the Rosseland approximation is employed to describe the
radiative heat flux in the fluid-phase energy equation.
The particle phase is assumed to have uniform density
distribution and is made of spherical particles having
one size. The present work is a direct generalization of
the work reported by Apazidis [9] on the heat transfer
characteristics of particle–fluid flow past a heated infinite
horizontal plate.

2. GOVERNING EQUATIONS

Consider unsteady laminar flow of a two-phase par-
ticulate suspension over a heated horizontal infinite sur-
face maintained at a constant temperatureTw in the pres-
ence of a gravity field, heat generation or absorption and
thermal radiation. The surface is coincident with the half
planey = 0, x ≥ 0 and the flow far from the surface is
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a uniform stream in thex-direction parallel to the sur-
face with both phases being in both hydrodynamic and
thermal equilibrium. Due to the density difference be-
tween both the fluid and particle phases, a separational
motion in which heavy particles falling from the flow
form a layer of dense sediment on the surface while
the carrier fluid flows in the opposite upward direction
is introduced. This settling process is called sedimenta-
tion (Wallis [18]). According to Kynch [19] and later by
Apazidis [8], the vertical sedimentation of solid particles
may proceed in three different ways, depending on the
shape of the curve of the total particle flow rate versus the
volume fraction of particles in the mixture. Apazidis [8]
has considered the case when a direct shock from the ini-
tial value of the particulate volume fractionα to the final
fully settled valueαM is formed at the interface of the
mixture and the settled particles with maximum packing
at the surface. The particle phase is assumed to be made
up of spherical solid particles having one size and with a
uniform density distribution. The particle Reynolds num-
ber is assumed to be less than unity so that the force inter-
action between the phases is limited to the Stokes drag.
Based on the above assumptions and treating the particle
phase as a continuum (Marble [20]), the governing equa-
tions for this investigation can be written as

−∂α
∂t
+ ∂

∂y

(
(1− α)v)= 0 (1)

(1− α)ρ
(
∂u

∂t
+ v ∂u

∂y

)
= (1− α)µ ∂

2u

∂y2

− 9

2
f (α)

µ

a2 (u− up) (2)

(1− α)ρ
(
∂v

∂t
+ v ∂v

∂y

)
= (1−α)

(
µ
∂2v

∂y2 −
∂p

∂y
−ρg

)
− 9

2
f (α)

µ

a2 (v − vp) (3)

(1−α)ρc
(
∂T

∂t
+v ∂T

∂y

)
= (1− α)λc

∂2T

∂y2

− 3
λcα

a2
(T − Tp)

+ (1− α)Q0(T − T∞)
− (1− α)∂qr

∂y
(4)

for the fluid phase and

∂α

∂t
+ ∂

∂y
(αvp)= 0 (5)

αρp

(
∂up

∂t
+ vp

∂up

∂y

)
= 9

2
f (α)

µ

a2 (u− up) (6)

αρp

(
∂vp

∂t
+ vp

∂vp

∂y

)
= α

(
−∂p
∂y
− ρpg

)
+ 9

2
f (α)

µ

a2
(v − vp) (7)

αρpcp

(
∂Tp

∂t
+ vp

∂Tp

∂y

)
= 3

λc

a2α(T − Tp) (8)

for the particle phase. Heret is time andy is the vertical
distance.u, v, p andT are the fluid-phasex-component
of velocity,y-component of velocity, pressure, and tem-
perature, respectively.α, ρ, µ, λc, andc are the volume
fraction of particles and the fluid-phase density, dynamic
viscosity, thermal conductivity, and specific heat, respec-
tively. a, g,Q0, qr andT∞ are the particle radius, gravita-
tional acceleration, heat generation or absorption coeffi-
cient, radiative heat flux and the free stream temperature.
A subscript p indicates particle phase. It should be noted
that positive values ofQ0 indicate heat generation while
negative values ofQ0 correspond to heat absorption con-
ditions.

Equations (1)–(8) are supplemented by the function
f (α) which is reported by Tam [21] and employed by
Apazidis [8, 9] such that

f (α)= α(4+ 3(8α− 3α2)1/2+ 3α)

(2− 3α)2
(9)

It should be mentioned thatf (α) represents a correction
factor for the Stokes drag force on a single spherical
particle which accounts for finite volume fraction of the
particle phase.

In addition, the radiative heat fluxqr is employed
according to Rosseland approximation such that

qr =− 4σ

3K

∂T 4

∂y
(10)

where σ and K are the Stefan–Boltzmann constant
and the mean absorption coefficient, respectively. As
done by Raptis [13, 14], the fluid-phase temperature
differences within the flow are assumed to be sufficiently
small so thatT 4 may be expressed as a linear function
of temperature. This is done by expandingT 4 in a
Taylor series about the free stream temperatureT∞ and
neglecting higher-order terms to yield

T 4= 4T 3∞T − 3T 4∞ (11)

By using equations (10) and (11) in the last term of
equation (4) one obtains

∂qr

∂y
=−16σT 3∞

3K

∂2T

∂y2
(12)
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It is convenient to nondimensionalize the above gov-
erning equations by using

η = y
a
, τ = gaγ

ν
t, u= ga2γ

ν
U

up= ga2γ

ν
Up, v = ga2γ

ν
V, vp= ga2γ

ν
Vp

(13)

θ = T − T∞
Tw − T∞ , θp= Tp− T∞

Tw − T∞
p =−ρgy(1− γP)

to yield

−∂α
∂τ
+ ∂

∂η

(
(1− α)V )= 0 (14)

Re

(
∂U

∂τ
+ V ∂U

∂η

)
= ∂

2U

∂η2 −
9

2

f (α)

(1− α) (U −Up) (15)

Re

(
∂V

∂τ
+ V ∂V

∂η

)
= ∂

2V

∂η2 + P −
9

2

f (α)

(1− α)(V − Vp) (16)

1

3
RePr

(
∂θ

∂τ
+ V ∂θ

∂η

)
=
(

1

3
+N

)
∂2θ

∂η2

+ 3

2
(1− ξ)Ec Pr

f (α)

(1− α)
[
(U −Up)

2+ (V − Vp)
2]

+ 1

3
EcPr

(
∂U

∂η

)2

− α

(1− α) (θ − θp)+ φθ (17)

∂α

∂τ
+ ∂

∂η
(αVp)= 0 (18)

γRe

(
∂Up

∂τ
+ Vp

∂Up

∂η

)
= 9

2

f (α)

α
(U −Up) (19)

γRe

(
∂Vp

∂τ
+Vp

∂Vp

∂η

)
= P −1+ 9

2

f (α)

α
(V −Vp) (20)

1

3
RePrγ k

(
∂θp

∂τ
+ Vp

∂θp

∂η

)
= 3

2
ξ
f (α)

α
EcPr

[
(U −Up)

2+ (V − Vp)
2]

+ (θ − θp) (21)

where

γ = ρp

ρ
, Re= ga3γ

ν2
, Pr = ν

κ

k = cp

c
, Ec=

(
ga2γ

ν

)2 1

c(TW − T∞)
ν = µ

ρ
, κ = λc

ρc
, φ = 1

3

Q0a
2

λc

N = 16σT 3∞
Kλc

(22)

are the particle loading, Reynolds number, Prandtl num-
ber, specific heat ratio, Eckert number, kinematic vis-
cosity, the fluid thermal diffusivity, the dimensionless
heat generation or absorption coefficient, and the di-
mensionless thermal radiation coefficient, respectively.
ξ (0≤ ξ ≤ 1) is a dimensionless parameter introduced to
apportion the heat dissipation between the phases [18].

According to the orders of magnitude of the dimen-
sionless numbers of the momentum and energy equations
given by Apazidis [8], it is concluded that the Eckert
numbers for metal particles in gas, water, and oil are ap-
proximately 10−6, 10−10, and 10−10, respectively. There-
fore, the neglect of the dissipation terms containingEc in
these equations is justified.

Assuming that the volume fraction of particles is
constant, equations (14) and (18) give

∂V

∂η
= ∂Vp

∂η
= 0 (23)

Also, with the assumption of zero volumetric flux in
the vertical direction as in the case of batch sedimenta-
tion [18], one may write

αVp+ (1− α)V = 0 (24)

Furthermore, assuming that the vertical motion of both
phases due to the gravity field has reached its stationary
state(∂Vp/∂τ = ∂V/∂τ = 0) and using equations (16),
(20) and (24) result in the following vertical components
of the velocity fields of both phases:

V = 2

9

α2(1− α)
f (α)

, Vp=−2

9

α(1− α)2
f (α)

(25)

The interface vertical velocity can be shown to be

Vi = 2

9

α2(1− α)2
(αM − α)f (α) (26)

whereαM (≈0.6 for spherical particles) is the volume
fraction of particles in the dense sediment near the
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surface (see [8]). It should be mentioned here that the
factor 2/9 in equations (25) and (26) is wrongfully
missing from the solutions of Apazidis [9].

The horizontal velocity distributions of both phases
(U andUp) were obtained from the solution of equa-
tions (15) and (19) and were reported earlier by Apaz-
idis [8]. Therefore, these solutions will not be repeated
herein. The energy equations of both phases can be trans-
formed by using a new coordinate system which moves
upwards with the interface velocityVi such that

η∗ = η− Viτ (27)

to yield

1

3
RePr

[
∂θ

∂τ
− (Vi − V ) ∂θ

∂η∗

]
=
(

1

3
+N

)
∂2θ

∂η∗2
− α

(1− α) (θ − θp)+ φθ (28)

1

3
RePrγ k

[
∂θp

∂τ
− (Vi − Vp)

∂θp

∂η∗

]
= θ − θp (29)

It should be mentioned that ifN and φ are formally
equated to zero, the equations reported by Apazidis [9]
will be recovered.

3. ANALYTICAL RESULTS

Analytical solutions for the thermal characteristics
of the problem under consideration are obtained for
two physical cases. The first case is that of stationary
temperature distributions of steady two-phase flow over
an isothermal surface while the second case deals with
periodic temperature distributions in which the surface is
periodically heated.

3.1. Case 1: Stationary temperature
distributions

For this case the energy equations of both phases
(28) and (29) (with the asterisks being dropped) and the
appropriate boundary conditions can be written as

−1

3
RePr(Vi − V )dθ

dη

=
(

1

3
+N

)
d2θ

dη2
− α

(1− α)(θ − θp)+ φθ (30)

−1

3
RePrγ k(Vi − Vp)

dθp

dη
= θ − θp (31)

η= 0: θ = 1
(32)

η=∞: θ = θp= 0

Equations (32) indicate that the fluid-phase tempera-
ture at the wall is uniform and that both the fluid- and
particle-phase temperatures far from the surface are equal
to the free stream temperature.

Equations (30) and (31) can be combined into a third-
order ordinary differential equation in terms ofθp. This is
done by solving forθ from equation (31) and substituting
into equation (30) to give

B1
d3θp

dη3
+B2

d2θp

dη2
+B3

dθp

dη
+B4θp= 0 (33)

where

B1=−1

3

(
1

3
+N

)
RePrγ k(Vi − V )

B2=
(

1

3
+N

)
− 1

9
Re2Pr2γ k(Vi − V )(Vi − Vp)

(34)

B3= 1

3
(Vi − V )Re Pr+ αPr γ k

3(1− α)(Vi − V )

− 1

3
RePr(Vi − Vp)φ

B4= φ
The physical solution of equation (33) requires that

the characteristic equation

B1r
3+B2r

2+B3r +B4= 0 (35)

(θp = C exp(rη), C is a constant) had two positive real
roots and one negative real root. More than one negative
root makes the problem to be underdetermined. While
there is no analytical method to show the existence of
two positive and one negative roots for equation (35), this
condition was satisfied in all the results obtained for this
case. Therefore, the solution forθp can be written as

θp(η)= C1 exp(−r1η)+C2 exp(−r2η)+C3 exp(−r3η)
r1, r2, r3> 0 (36)

whereC1, C2 andC3 are arbitrary constants to be found
by the application of the boundary conditions.

Application of equations (32) produces

C1= 1

1+ r1(1
3 RePrγ k)(Vi − Vp)

(37)
C2= 0, C3= 0
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Figure 1. Effects of N and φ on θ and θp for air–metal particles.

Figure 2. Effects of N and φ on θ and θp for water–metal
particles.

The corresponding solution forθ(η) can then be written
as

θ(η)= exp(−r1η) (38)

Figures 1–3depict the influence of the thermal radi-
ation coefficientN and the heat absorption coefficientφ
on the fluid-phase temperatureθ and the particle-phase
temperatureθp for suspensions of air–metal particles,
water–metal particles, and oil–metal particles, respec-
tively. The values of the physical parameters employed
to produce these and all subsequent figures represent ac-
tual values for the fluid–particle combinations consid-
ered (see [9]). The obvious temperature lag of the par-
ticle phase compared to the fluid phase is apparent in
these figures. Physically speaking, fluid-phase heat ab-
sorption effects have the tendency to decrease the fluid-
phase temperature. As a result and through the interphase

Figure 3. Effects of N and φ on θ and θp for oil–metal particles.

heat transfer, the temperature of the particle phase de-
creases. This is clearly shown infigures 1–3. On the other
hand, increases in the thermal radiation coefficientN en-
hances the thermal diffusion of the fluid phase causing
its temperature to increase. Consequently, and as men-
tioned before, the particle-phase temperature increases.
The thermal layers of both phases are observed to in-
crease asN increases and decreases asφ decreases for all
mixture types considered herein.Figures 1–3are selected
to show different levels of temperature deficit between
the phases by proper choice of the Reynolds numberRe
and the particle volume fractionα. Figure 1for air–metal
particles flow shows a moderate temperature deficit be-
tween the phases whilefigure 2for water–metal particles
flow shows small temperature deficit andfigure 3for oil–
metal particles flow displays large particle-phase temper-
ature lag compared to the fluid phase. In the absence of
heat absorption and thermal radiation (φ = 0,N = 0) and
without the factor 2/9 in the results ofV , Vp and Vi ,
the above solutions are in excellent agreement with the
results reported by Apazidis [9]. It should be noted that
no physically-correct solutions were possible for positive
values ofφ (heat generation).

3.2. Case 2: Periodic temperature
distributions

For this case the fluid-phase wall temperature has the
dimensional form

Tw = T∞ + (Tw − T∞)cos(ωt) (39)
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whereω is the frequency of wall temperature oscillation.
In dimensionless form, the wall temperature becomes

θ(τ,0)= cos(ωτ) (40)

The thermal equilibrium of both phases in the free stream
is represented by

θ(τ,∞)= θp(τ,∞)= 0 (41)

The general unsteady equations (28) and (29) are solved
subject to equations (40) and (41) forθ(τ, η) andθp(τ, η)
by assuming

θ(τ, η)= cos(ωτ + βη)exp(−sη) (42)

θp(τ, η)=
[
D1 cos(ωτ + βη)+D2 sin(ωτ + βη)]
· exp(−sη) (43)

where β , D1, D2 and s are constants which make
equations (28) and (29) subject to equations (40) and (41)
identically satisfied by the solutions (42) and (43).

Substitution of equations (42) and (43) into equa-
tions (28) and (29) results in two equations of the general
form

P1 cos(ωτ + βη)+ P2 sin(ωτ + βη)= 0 (44)

whereP1 andP2 are functions of the constantsβ ,D1,D2
ands. EquatingP1 andP2 of each of the obtained two
equations results in the following system of equations:

1

3
RePrγ k

[
D2ω− (Vi − Vp)(D2β − sD1)

]
+D1− 1= 0 (45)

−1

3
RePrγ k

[
D1ω− (Vi − Vp)(D1β + sD2)

]
+D2= 0 (46)

1

3
RePr(Vi − V )s +

(
1

3
+N

)(
β2− s2)

+ α

(1− α)(1−D1)− φ = 0 (47)

−1

3
RePr

[
ω− (Vi − V )β

]−(1

3
+N

)
(2βs)

− α

(1− α)D2= 0 (48)

Equations (45)–(48) represent four nonlinear equations
with four unknowns (β , D1, D2 and s) which must be
solved numerically. For fast convergence of the solutions,
the following procedure is followed. First, equations (47)
and (48) are solved forD1 andD2 in terms ofβ ands,
respectively. Secondly, the obtained expressions forD1

andD2 are then substituted into equation (46) which
produces a quadratic equation ins with the coefficients
containing the constantβ . For an assumed value ofβ and
given values of the involved parameters, the roots of this
quadratic equation which are real and of opposite signs
can be obtained. Therefore, the negative root is chosen
and its absolute value is the needed value ofs. With the
value ofs being known for the assumedβ , the constants
D1 andD2 can then be determined from equations (47)
and (48) as mentioned above. Finally, the values ofs,
D1 andD2 are substituted into equation (45) which is
then solved forβ . As long asβassumed6= βobtained, the
same iteration procedure continues until convergence is
obtained. Results based on the solutions ofθ andθp given
by equations (42) and (43) are displayed infigures 4–8.

Figure 4. Effects of N and φ on periodic fluid-phase tempera-
ture distribution in air–particle flow.

Figure 5. Effects of N and φ on periodic particle-phase
temperature distribution in air–particle flow.
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Figure 6. Effects of N and φ on periodic fluid-phase tempera-
ture distribution in oil–particle flow.

Figure 7. Effects of N and φ on periodic particle-phase
temperature in oil–particle flow.

Figures 4 and 5 display the effects of the thermal
radiation coefficientN and heat absorption coefficient
φ on the fluid- and particle-phase periodic temperature
distributions in air–particle flow forRe= 0.01 andα =
0.001, respectively. As in the stationary case, thermal
radiation increases both the fluid- and particle-phase
temperatures (forτ = T ∗ and τ = T ∗/8) while heat
absorption produces lower temperature distributions for
both phases (forτ = T ∗ and τ = T ∗/8). Also, large
temperature differences between the phases are obtained
at high values of the relative velocity and large relaxation
times for energy transfer. Thus, it is expected that large
temperature differences occur for air–particle mixtures
with low particle concentrations and at high Reynolds
numbers due to high interphase drag as illustrated in
figures 4and5. It is also observed from these figures that

Figure 8. Effects of N and φ on periodic temperature distribu-
tions in water–particle flow.

the heat absorption effect speeds up the approach of both
phases to the free stream thermal conditions.

In figures 6and 7, similar plots for the fluid-phase
temperatureθ and the particle-phase temperatureθp as
in figures 4and 5 but for an oil–particle mixture with
Re= 0.01 andα = 0.001. Due to the large value of
Prandtl number for this case, large temperature differ-
ences between the phases occur. The effects ofN and
φ on θ andθp are the same as infigures 4and5.

Plots for θ and θp for a water–particle mixture with
Re= 0.1 andα = 0.1 are presented infigure 8. It is ob-
served that both phases are in thermal equilibrium. This
is due to insignificant interphase drag and small thermal
relaxation times. These behaviours are consistent with
those reported earlier by Apazidis [9]. Again, in the ab-
sence of heat absorption (φ = 0) and thermal radiation
(N = 0), the results of Apazidis [9] are obtained provided
that the factor 2/9 in the expressions ofV , Vp andVi is
absent.

Of special interest for this problem is the rate of heat
transfer between the sediment layer on the surface and the
suspension above it. The total heat transfer rate (without
the radiative heat transfer part) through the moving inter-
face between the sediment and the suspension is the sum
of the convective heat transfer rate of the fluid phase and
the sensible heat transfer of the particles. This is given by

qT = qf + qp (49)

where

qf =−(1− α)λc
∂T

∂y

∣∣∣∣
y=0

=−(1− α)λc

a
(Tw − T∞)∂θ

∂η

∣∣∣∣
η=0

(50)
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qp= αcpρp(vp− v)(Tp− Tw)
∣∣
η=0

= αcpρp
ga2γ

ν
(Tw − T∞)(Vp− Vi)(θp− 1)

∣∣
η=0 (51)

The dimensionless form of equation (49) can be written
as

QT =Qf +Qp (52)

where

Qf =−(1− α)∂θ
∂η

∣∣∣∣
η=0

(53)
Qp= αRePrγ k(Vp− Vi)(θp− 1)

∣∣
η=0

andQT is nondimensionized byκρc(Tw − T∞)/a.

For the case of stationary temperature distributions,
equations (53) are given by

Qf = (1− α)r1
Qp= αRePrγ k(Vp− Vi)

·
[

1

1− 1
3αRePrγ k(Vp− Vi)

− 1

]
(54)

Figures 9and10 illustrate the influence of the thermal
radiation coefficientN and the heat absorption coefficient
φ on the dimensionless fluid-phase heat transfer rate
Qf , dimensionless particle-phase heat transfer rateQp,
and the dimensionless total heat transfer rateQT for an
air–metal particles suspension at different particle-phase
volume fraction levels, respectively. The heat transfer
contribution of each of the phases is dependent of the
value of the Reynolds numberRe. For smallRevalues,
as considered infigures 9 and 10, most of the heat
transfer contribution is due to the convective heat transfer
of the fluid phase. It is seen fromfigure 1 that the

Figure 9. Effects of α and N on heat fluxes in air–particle flow.

wall slope of the fluid-phase temperature increases asN

increases. This causes the rate of heat transfer of the fluid
phase to decrease at any value of the particle volume
fraction α. In the same way, the wall particle-phase
temperature increases asN increases. This produces
lower sensible heat transfer rates of the particles for
all values ofα. These behaviors are depicted clearly
in figure 9. On the other hand, both the wall slope of
the fluid-phase temperature and the wall particle-phase
temperature decrease as the heat absorption coefficientφ

decreases. This has the direct effect of increasing the
rates of convective fluid-phase heat transfer, the sensible
particle-phase heat transfer, and the total heat flux as
shown infigure 10.

Figures 11–14display the influence ofN andφ on
Qf , Qp andQT for water–metal particles and oil–metal
particles suspensions. In these figures, the same effect

Figure 10. Effects of α and φ on heat fluxes in air–particle flow.

Figure 11. Effects of α and N on heat fluxes in water–particle
flow.
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Figure 12. Effects of α and φ on heat fluxes in water–particle
flow.

Figure 13. Effects of α and N on heat fluxes in oil–particle flow.

of N andφ on Qf , Qp andQT are observed for these
suspensions as discussed earlier for air–metal particles
suspensions. The distinct behavior in these figures is
that for a water–particle suspension atRe= 1, the total
heat transfer is almost entirely due to the convective
heat transfer of the fluid phase while for an oil–particle
suspension atRe= 0.1, the sensible heat transfer of
the particles is more predominant than that of the fluid
phase. It should be noted that infigures 9–14the total
heat transfer rate shows an increasing behavior with
increases in the particulate volume fractionα up to a
certain value ofα and then it decreases beyond this
value. Physically, when the sensible heat transfer of the
particles is dominant, increasing the volume fraction
of particles α increases the total heat transfer rate.
Also, increases in the values ofα have the tendency to
increase the coupling between the phases which causes
decreases in both the relative velocity and temperature

Figure 14. Effects of α and φ on heat fluxes in oil–particle flow.

between the particles and the interface. However, at
a certain value ofα, the effect of reduction of the
relative velocity and temperature becomes greater than
the effect of increase ofα on QT. This causesQT to
decrease. Furthermore, when the convective heat transfer
of the fluid phase is dominant, initial increases inα
produce higher fluid-phase temperature gradients at the
interface causing higher heat transfer rates. However,
as α is increased further, both the relative velocity
and temperature decreases causing lower fluid-phase
temperature gradients at the interface. This causes the
convective heat transfer rate and, therefore, the total heat
flux to decrease.

4. CONCLUSION

This paper focused on the study of the effects of
fluid-phase heat generation or absorption and thermal
radiation on the problem of heat transfer in a particulate
suspension flow past a horizontal heated surface in the
presence of a gravity field. Analytical solutions for the
temperature distributions and heat fluxes of both phases
were obtained for stationary and periodic thermal wall
conditions. The study was done on suspensions of metal
particles in air, water, and oil. It was found that the
temperatures as well as the thermal wall layers of both the
fluid and the particle phases increased due to the presence
of thermal radiation and decreased owing the presence of
heat absorption effects. As a result, the thermal radiation
effect decreased the total rate of heat transfer for all
mixtures considered while the heat absorption effect
enhanced the total heat flux. In general, the total heat
flux increased with increasing values of the particulate
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volume fraction to a maximum after which it showed a
decreasing behavior. Larger temperature deficit between
the phases were found at high density ratios between
the phases, high Prandtl numbers, and high Reynolds
numbers.
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